El llamado triángulo de potencias es la mejor forma de ver y comprender de forma gráfica qué es el factor de potencia CosФ y su estrecha relación con los restantes tipos de potencia presentes en un circuito eléctrico de corriente alterna.
Como se podrá observar en el triángulo de la ilustración, el factor de potencia o CosФ representa el valor del ángulo que se forma al representar gráficamente la potencia activa (P) y la potencia aparente (S), es decir, la relación existente entre la potencia real de trabajo y la potencia total consumida por la carga o el consumidor conectado a un circuito eléctrico de corriente alterna.
La operación del CosФ será “1” o un número fraccionario menor que “1” en dependencia del factor de potencia que le corresponde a cada equipo o dispositivo en específico. Ese número responde al valor de la función trigonométrica “coseno”, equivalente a los grados del ángulo que se forma entre las potencias (P) y (S).
Si el número que se obtiene como resultado de la operación matemática es un decimal menor que “1” (como por ejemplo 0,95), dicho número representará el factor de potencia correspondiente al defasaje en grados existente entre la intensidad de la corriente eléctrica y la tensión o voltaje en el circuito de corriente alterna.
Lo ideal sería que el resultado fuera siempre igual a “1”, pues así habría una mejor optimización y aprovechamiento del consumo de energía eléctrica, o sea, habría menos pérdida de energía no aprovechada y una mayor eficiencia de trabajo en los generadores que producen esa energía.
En los circuitos de resistencia activa, el factor de potencia siempre es “1”, porque como ya vimos anteriormente en ese caso no existe desfasaje entre la intensidad de la corriente y la tensión o voltaje. Pero en los circuitos inductivos, como ocurre con los motores, transformadores de voltaje y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de enrollado o bobina, el valor del factor de potencia se muestra con una fracción decimal menor que “1” (como por ejemplo 0,8), lo que indica el retraso o desfasaje que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje. Por tanto, un motor de corriente alterna con un factor de potencia o Cos = 0,95 , por ejemplo, será mucho más eficiente que otro que posea un Cos = 0,85 .
Si el número que se obtiene como resultado de la operación matemática es un decimal menor que “1” (como por ejemplo 0,95), dicho número representará el factor de potencia correspondiente al defasaje en grados existente entre la intensidad de la corriente eléctrica y la tensión o voltaje en el circuito de corriente alterna.
Lo ideal sería que el resultado fuera siempre igual a “1”, pues así habría una mejor optimización y aprovechamiento del consumo de energía eléctrica, o sea, habría menos pérdida de energía no aprovechada y una mayor eficiencia de trabajo en los generadores que producen esa energía.
En los circuitos de resistencia activa, el factor de potencia siempre es “1”, porque como ya vimos anteriormente en ese caso no existe desfasaje entre la intensidad de la corriente y la tensión o voltaje. Pero en los circuitos inductivos, como ocurre con los motores, transformadores de voltaje y la mayoría de los dispositivos o aparatos que trabajan con algún tipo de enrollado o bobina, el valor del factor de potencia se muestra con una fracción decimal menor que “1” (como por ejemplo 0,8), lo que indica el retraso o desfasaje que produce la carga inductiva en la sinusoide correspondiente a la intensidad de la corriente con respecto a la sinusoide de la tensión o voltaje. Por tanto, un motor de corriente alterna con un factor de potencia o Cos
El dato del factor de potencia de cada motor es un valor fijo, que aparece generalmente indicado en una placa metálica pegada a su cuerpo o carcasa, donde se muestran también otros datos de interés, como su tensión o voltaje de trabajo en volt (V), intensidad de la corriente de trabajo en A y su consumo de energía eléctrica en W.
Ya vimos anteriormente que la potencia de un motor eléctrico o de cualquier otro dispositivo que contenga bobinas o enrollados se puede calcular empleando la siguiente fórmula matemática:
Ya vimos anteriormente que la potencia de un motor eléctrico o de cualquier otro dispositivo que contenga bobinas o enrollados se puede calcular empleando la siguiente fórmula matemática:
P=VxI CosФ
El resultado de esta operación matemática estará dada siempre en W.
Si conocemos la potencia en watt de un dispositivo o equipo, su voltaje de trabajo y su factor de potencia, y quisiéramos hallar cuántos ampere (A) de corriente fluyen por el circuito (digamos, por ejemplo, en el caso de un motor), despejando (I) en la fórmula anterior tendremos:
Si conocemos la potencia en watt de un dispositivo o equipo, su voltaje de trabajo y su factor de potencia, y quisiéramos hallar cuántos ampere (A) de corriente fluyen por el circuito (digamos, por ejemplo, en el caso de un motor), despejando (I) en la fórmula anterior tendremos:
I = (P)/(VxI CosФ)
El resultado de esa operación lo obtendremos directamente en ampere (A).
El resultado de esta otra operación matemática será, igualmente, el valor de la corriente que fluye por el circuito, en ampere (A).
Habíamos visto también que una carga capacitiva (compuesta por condensadores o capacitores) conectada a un circuito eléctrico de corriente alterna provoca el adelantamiento de la sinusoide de intensidad de la corriente con relación a la sinusoide de la tensión o voltaje. Esto produce un efecto de desfasaje entre ambas magnitudes eléctricas, pero ahora en sentido inverso al desfasaje que provocan las cargas inductivas.
El resultado de esta otra operación matemática será, igualmente, el valor de la corriente que fluye por el circuito, en ampere (A).
Habíamos visto también que una carga capacitiva (compuesta por condensadores o capacitores) conectada a un circuito eléctrico de corriente alterna provoca el adelantamiento de la sinusoide de intensidad de la corriente con relación a la sinusoide de la tensión o voltaje. Esto produce un efecto de desfasaje entre ambas magnitudes eléctricas, pero ahora en sentido inverso al desfasaje que provocan las cargas inductivas.
Por tanto, cuando en la red de suministro eléctrico de una industria existen muchos motores y transformadores funcionando, y se quiere mejorar el factor de potencia, será necesario emplear bancos de capacitores dentro de la propia industria, conectados directamente a la red principal. En algunas empresas grandes se pueden encontrar también motores de corriente alterna del tipo "sincrónicos" funcionando al vacío, es decir, sin carga, para mejorar también el factor de potencia.
Banco de capacitores instalados en un circuito eléctrico de fuerza, con el fin de. mejorar el coseno de "fi" o factor de potencia en una instalación industrial.
De esa forma los capacitores, al actuar sobre la sinusoide de la corriente, produce el efecto contrario al de la inductancia, impidiendo que la corriente (I) se atrase mucho en relación con el voltaje (V). Así se tratará de que las sinusoides se pongan en fase y que el valor del factor de potencia se aproxime lo más posible a “1”.
EJEMPLO:
Resolver el siguiente sistema:
Paginas de interes personal:
http://www.youtube.com/watch?v=dq1PdqoIyN0
No hay comentarios:
Publicar un comentario